Learning Deep Resnet Blocks Sequentially
ثبت نشده
چکیده
We prove a multiclass boosting theory for the ResNet architectures which simultaneously creates a new technique for multiclass boosting and provides a new algorithm for ResNet-style architectures. Our proposed training algorithm, BoostResNet, is particularly suitable in non-differentiable architectures. Our method only requires the relatively inexpensive sequential training of T “shallow ResNets”. We prove that the training error decays exponentially with the depth T if the weak module classifiers that we train perform slightly better than some weak baseline. In other words, we propose a weak learning condition and prove a boosting theory for ResNet under the weak learning condition. A generalization error bound based on margin theory is proved and suggests that ResNet could be resistant to overfitting using a network with l1 norm bounded weights.
منابع مشابه
Learning Deep ResNet Blocks Sequentially using Boosting Theory
Deep neural networks are known to be difficult to train due to the instability of back-propagation. A deep residual network (ResNet) with identity loops remedies this by stabilizing gradient computations. We prove a boosting theory for the ResNet architecture. We construct T weak module classifiers, each contains two of the T layers, such that the combined strong learner is a ResNet. Therefore,...
متن کاملNotes: A Continuous Model of Neural Networks. Part I: Residual Networks
Based on a natural connection between ResNet and transport equation or its characteristic equation, we propose a continuous flow model for both ResNet and plain net. Through this continuous model, a ResNet can be explicitly constructed as a refinement of a plain net. The flow model provides an alternative perspective to understand phenomena in deep neural networks, such as why it is necessary a...
متن کاملIdentity Mappings in Deep Residual Networks
Deep residual networks [1] have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connec...
متن کاملDeep Residual Learning for Weakly-Supervised Relation Extraction
Deep residual learning (ResNet) (He et al., 2016) is a new method for training very deep neural networks using identity mapping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-theart performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well underst...
متن کاملBlockDrop
Very deep convolutional neural networks offer excellent recognition results, yet their computational expense limits their impact for many real-world applications. We introduce BlockDrop, an approach that learns to dynamically choose which layers of a deep network to execute during inference so as to best reduce total computation without degrading prediction accuracy. Exploiting the robustness o...
متن کامل